Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Nat Commun ; 15(1): 3248, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622112

ABSTRACT

5,10-methylenetetrahydrofolate reductase (MTHFR) commits folate-derived one-carbon units to generate the methyl-donor S-adenosyl-L-methionine (SAM). Eukaryotic MTHFR appends to the well-conserved catalytic domain (CD) a unique regulatory domain (RD) that confers feedback inhibition by SAM. Here we determine the cryo-electron microscopy structures of human MTHFR bound to SAM and its demethylated product S-adenosyl-L-homocysteine (SAH). In the active state, with the RD bound to a single SAH, the CD is flexible and exposes its active site for catalysis. However, in the inhibited state the RD pocket is remodelled, exposing a second SAM-binding site that was previously occluded. Dual-SAM bound MTHFR demonstrates a substantially rearranged inter-domain linker that reorients the CD, inserts a loop into the active site, positions Tyr404 to bind the cofactor FAD, and blocks substrate access. Our data therefore explain the long-distance regulatory mechanism of MTHFR inhibition, underpinned by the transition between dual-SAM and single-SAH binding in response to cellular methylation status.


Subject(s)
Methylenetetrahydrofolate Reductase (NADPH2) , S-Adenosylmethionine , Humans , Allosteric Regulation , Methylenetetrahydrofolate Reductase (NADPH2)/chemistry , Cryoelectron Microscopy , S-Adenosylmethionine/metabolism , Methylation
2.
Hum Mol Genet ; 32(17): 2717-2734, 2023 08 26.
Article in English | MEDLINE | ID: mdl-37369025

ABSTRACT

Inherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria, present unique challenges to energetic homeostasis by disrupting energy-producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut)-type methylmalonic aciduria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared with littermate controls, along with a relative reduction in lean mass but increase in fat mass. Brown adipose tissue showed a process of whitening, in line with lower body surface temperature and lesser ability to cope with cold challenge. Mutant mice had dysregulated plasma glucose, delayed glucose clearance and a lesser ability to regulate energy sources when switching from the fed to fasted state, while liver investigations indicated metabolite accumulation and altered expression of peroxisome proliferator-activated receptor and Fgf21-controlled pathways. Together, these shed light on the mechanisms and adaptations behind energy imbalance in methylmalonic aciduria and provide insight into metabolic responses to chronic energy shortage, which may have important implications for disease understanding and patient management.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Mice , Animals , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Energy Metabolism/genetics , Liver/metabolism
3.
Nat Metab ; 5(1): 80-95, 2023 01.
Article in English | MEDLINE | ID: mdl-36717752

ABSTRACT

Methylmalonic aciduria (MMA) is an inborn error of metabolism with multiple monogenic causes and a poorly understood pathogenesis, leading to the absence of effective causal treatments. Here we employ multi-layered omics profiling combined with biochemical and clinical features of individuals with MMA to reveal a molecular diagnosis for 177 out of 210 (84%) cases, the majority (148) of whom display pathogenic variants in methylmalonyl-CoA mutase (MMUT). Stratification of these data layers by disease severity shows dysregulation of the tricarboxylic acid cycle and its replenishment (anaplerosis) by glutamine. The relevance of these disturbances is evidenced by multi-organ metabolomics of a hemizygous Mmut mouse model as well as through identification of physical interactions between MMUT and glutamine anaplerotic enzymes. Using stable-isotope tracing, we find that treatment with dimethyl-oxoglutarate restores deficient tricarboxylic acid cycling. Our work highlights glutamine anaplerosis as a potential therapeutic intervention point in MMA.


Subject(s)
Metabolism, Inborn Errors , Methylmalonyl-CoA Mutase , Mice , Animals , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Glutamine , Multiomics , Metabolism, Inborn Errors/genetics
4.
J Inherit Metab Dis ; 46(3): 421-435, 2023 05.
Article in English | MEDLINE | ID: mdl-36371683

ABSTRACT

Methylmalonyl-coenzyme A (CoA) mutase (MMUT)-type methylmalonic aciduria is a rare inherited metabolic disease caused by the loss of function of the MMUT enzyme. Patients develop symptoms resembling those of primary mitochondrial disorders, but the underlying causes of mitochondrial dysfunction remain unclear. Here, we examined environmental and genetic interactions in MMUT deficiency using a combination of computational modeling and cellular models to decipher pathways interacting with MMUT. Immortalized fibroblast (hTERT BJ5ta) MMUT-KO (MUTKO) clones displayed a mild mitochondrial impairment in standard glucose-based medium, but they did not to show increased reliance on respiratory metabolism nor reduced growth or viability. Consistently, our modeling predicted MUTKO specific growth phenotypes only for lower extracellular glutamine concentrations. Indeed, two of three MMUT-deficient BJ5ta cell lines showed a reduced viability in glutamine-free medium. Further, growth on 183 different carbon and nitrogen substrates identified increased NADH (nicotinamide adenine dinucleotide) metabolism of BJ5ta and HEK293 MUTKO cells compared with controls on purine- and glutamine-based substrates. With this knowledge, our modeling predicted 13 reactions interacting with MMUT that potentiate an effect on growth, primarily those of secondary oxidation of propionyl-CoA, oxidative phosphorylation and oxygen diffusion. Of these, we validated 3-hydroxyisobutytyl-CoA hydrolase (HIBCH) in the secondary propionyl-CoA oxidation pathway. Altogether, these results suggest compensation for the loss of MMUT function by increasing anaplerosis through glutamine or by diverting flux away from MMUT through the secondary propionyl-CoA oxidation pathway, which may have therapeutic relevance.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Mitochondrial Diseases , Humans , HEK293 Cells , Amino Acid Metabolism, Inborn Errors/diagnosis , Mitochondrial Diseases/metabolism , Methylmalonyl-CoA Mutase , Methylmalonic Acid/metabolism
5.
Hum Genet ; 141(7): 1253-1267, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34796408

ABSTRACT

Pathogenic variants in MMAB cause cblB-type methylmalonic aciduria, an autosomal-recessive disorder of propionate metabolism. MMAB encodes ATP:cobalamin adenosyltransferase, using ATP and cob(I)alamin to create 5'-deoxyadenosylcobalamin (AdoCbl), the cofactor of methylmalonyl-CoA mutase (MMUT). We identified bi-allelic disease-causing variants in MMAB in 97 individuals with cblB-type methylmalonic aciduria, including 33 different and 16 novel variants. Missense changes accounted for the most frequent pathogenic alleles (p.(Arg186Trp), N = 57; p.(Arg191Trp), N = 19); while c.700C > T (p.(Arg234*)) was the most frequently identified truncating variant (N = 14). In fibroblasts from 76 affected individuals, the ratio of propionate incorporation in the presence and absence of hydroxocobalamin (PI ratio) was associated to clinical cobalamin responsiveness and later disease onset. We found p.(Arg234*) to be associated with cobalamin responsiveness in vitro, and clinically with later onset; p.(Arg186Trp) and p.(Arg191Trp) showed no clear cobalamin responsiveness and early onset. Mapping these and novel variants onto the MMAB structure revealed their potential to affect ATP and AdoCbl binding. Follow-up biochemical characterization of recombinant MMAB identified its three active sites to be equivalent for ATP binding, determined by fluorescence spectroscopy (Kd = 21 µM) and isothermal calorimetry (Kd = 14 µM), but function as two non-equivalent AdoCbl binding sites (Kd1 = 0.55 µM; Kd2 = 8.4 µM). Ejection of AdoCbl was activated by ATP (Ka = 24 µM), which was sensitized by the presence of MMUT (Ka = 13 µM). This study expands the landscape of pathogenic MMAB variants, provides association of in vitro and clinical responsiveness, and facilitates insight into MMAB function, enabling better disease understanding.


Subject(s)
Alkyl and Aryl Transferases , Amino Acid Metabolism, Inborn Errors , Adaptor Proteins, Signal Transducing/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Alkyl and Aryl Transferases/metabolism , Alleles , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/pathology , Humans , Mutation , Propionates , Proto-Oncogene Proteins c-cbl/metabolism , Vitamin B 12/metabolism
6.
Am J Hum Genet ; 108(7): 1283-1300, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34214447

ABSTRACT

Most rare clinical missense variants cannot currently be classified as pathogenic or benign. Deficiency in human 5,10-methylenetetrahydrofolate reductase (MTHFR), the most common inherited disorder of folate metabolism, is caused primarily by rare missense variants. Further complicating variant interpretation, variant impacts often depend on environment. An important example of this phenomenon is the MTHFR variant p.Ala222Val (c.665C>T), which is carried by half of all humans and has a phenotypic impact that depends on dietary folate. Here we describe the results of 98,336 variant functional-impact assays, covering nearly all possible MTHFR amino acid substitutions in four folinate environments, each in the presence and absence of p.Ala222Val. The resulting atlas of MTHFR variant effects reveals many complex dependencies on both folinate and p.Ala222Val. MTHFR atlas scores can distinguish pathogenic from benign variants and, among individuals with severe MTHFR deficiency, correlate with age of disease onset. Providing a powerful tool for understanding structure-function relationships, the atlas suggests a role for a disordered loop in retaining cofactor at the active site and identifies variants that enable escape of inhibition by S-adenosylmethionine. Thus, a model based on eight MTHFR variant effect maps illustrates how shifting landscapes of environment- and genetic-background-dependent missense variation can inform our clinical, structural, and functional understanding of MTHFR deficiency.


Subject(s)
Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Mutation, Missense , Amino Acid Substitution , DNA Mutational Analysis , Diploidy , Gene Library , Genotype , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/deficiency , Methylenetetrahydrofolate Reductase (NADPH2)/physiology , Saccharomyces cerevisiae/genetics
7.
Biochimie ; 183: 100-107, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33476699

ABSTRACT

The folate and methionine cycles, constituting one-carbon metabolism, are critical pathways for cell survival. Intersecting these two cycles, 5,10-methylenetetrahydrofolate reductase (MTHFR) directs one-carbon units from the folate to methionine cycle, to be exclusively used for methionine and S-adenosylmethionine (AdoMet) synthesis. MTHFR deficiency and upregulation result in diverse disease states, rendering it an attractive drug target. The activity of MTHFR is inhibited by the binding of AdoMet to an allosteric regulatory domain distal to the enzyme's active site, which we have previously identified to constitute a novel fold with a druggable pocket. Here, we screened 162 AdoMet mimetics using differential scanning fluorimetry, and identified 4 compounds that stabilized this regulatory domain. Three compounds were sinefungin analogues, closely related to AdoMet and S-adenosylhomocysteine (AdoHcy). The strongest thermal stabilisation was provided by (S)-SKI-72, a potent inhibitor originally developed for protein arginine methyltransferase 4 (PRMT4). Using surface plasmon resonance, we confirmed that (S)-SKI-72 binds MTHFR via its allosteric domain with nanomolar affinity. Assay of MTHFR activity in the presence of (S)-SKI-72 demonstrates inhibition of purified enzyme with sub-micromolar potency and endogenous MTHFR from HEK293 cell lysate in the low micromolar range, both of which are lower than AdoMet. Nevertheless, unlike AdoMet, (S)-SKI-72 is unable to completely abolish MTHFR activity, even at very high concentrations. Combining binding assays, kinetic characterization and compound docking, this work indicates the regulatory domain of MTHFR can be targeted by small molecules and presents (S)-SKI-72 as an excellent candidate for development of MTHFR inhibitors.


Subject(s)
Enzyme Inhibitors/chemistry , Methylenetetrahydrofolate Reductase (NADPH2)/antagonists & inhibitors , Methylenetetrahydrofolate Reductase (NADPH2)/chemistry , S-Adenosylmethionine/chemistry , Allosteric Regulation , Humans , Protein Domains
8.
JIMD Rep ; 48(1): 4-10, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31392106

ABSTRACT

Familial hypercholesterolemia due to heterozygous low-density lipoprotein-receptor mutations is a common inborn errors of metabolism. Secondary hypercholesterolemia due to a defect in phytosterol metabolism is far less common and may escape diagnosis during the work-up of patients with dyslipidemias. Here we report on two sisters with the rare, autosomal recessive condition, sitosterolemia. This disease is caused by mutations in a defective adenosine triphosphate-binding cassette sterol excretion transporter, leading to highly elevated plant sterol concentrations in tissues and to a wide range of symptoms. After a delayed diagnosis, treatment with a diet low in plant lipids plus ezetimibe to block the absorption of sterols corrected most of the clinical and biochemical signs of the disease. We followed the two patients for over 10 years and report their initial presentation and long-term response to treatment.

9.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1265-1272, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30682498

ABSTRACT

Human methylmalonyl-CoA epimerase (MCEE) catalyzes the interconversion of d-methylmalonyl-CoA and l-methylmalonyl-CoA in propionate catabolism. Autosomal recessive pathogenic variations in MCEE reportedly cause methylmalonic aciduria (MMAuria) in eleven patients. We investigated a cohort of 150 individuals suffering from MMAuria of unknown origin, identifying ten new patients with pathogenic variations in MCEE. Nine patients were homozygous for the known nonsense variation p.Arg47* (c.139C > T), and one for the novel missense variation p.Ile53Arg (c.158T > G). To understand better the molecular basis of MCEE deficiency, we mapped p.Ile53Arg, and two previously described pathogenic variations p.Lys60Gln and p.Arg143Cys, onto our 1.8 Šstructure of wild-type (wt) human MCEE. This revealed potential dimeric assembly disruption by p.Ile53Arg, but no clear defects from p.Lys60Gln or p.Arg143Cys. We solved the structure of MCEE-Arg143Cys to 1.9 Šand found significant disruption of two important loop structures, potentially impacting surface features as well as the active-site pocket. Functional analysis of MCEE-Ile53Arg expressed in a bacterial recombinant system as well as patient-derived fibroblasts revealed nearly undetectable soluble protein levels, defective globular protein behavior, and using a newly developed assay, lack of enzymatic activity - consistent with misfolded protein. By contrast, soluble protein levels, unfolding characteristics and activity of MCEE-Lys60Gln were comparable to wt, leaving unclear how this variation may cause disease. MCEE-Arg143Cys was detectable at comparable levels to wt MCEE, but had slightly altered unfolding kinetics and greatly reduced activity. These studies reveal ten new patients with MCEE deficiency and rationalize misfolding and loss of activity as molecular defects in MCEE-type MMAuria.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Genetic Predisposition to Disease/genetics , Mutation , Racemases and Epimerases/deficiency , Amino Acid Metabolism, Inborn Errors/enzymology , Amino Acid Metabolism, Inborn Errors/metabolism , Codon, Nonsense , Crystallography, X-Ray , Homozygote , Humans , Models, Molecular , Mutation, Missense , Protein Folding , Racemases and Epimerases/chemistry , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism
10.
Neuropediatrics ; 49(2): 154-157, 2018 04.
Article in English | MEDLINE | ID: mdl-29401530

ABSTRACT

Antiquitin deficiency is the most prevalent form of pyridoxine-dependent epilepsy. While most patients present with neonatal onset of therapy-resistant seizures, a few cases with late-onset during infancy have been described. Here, we describe the juvenile onset of epilepsy at the age of 17 years due to antiquitin deficiency in an Indian female with homozygosity for the most prevalent ALDH7A1 missense mutation, c.1279G > C; p.Glu427Gln in exon 14. The diagnosis was established along familial cosegregation analysis for an affected offspring, that had neonatal pyridoxine responsive seizures and had been found to be compound heterozygous for c.1279G > C; p.Glu427Gln in exon 14 and a nonsense mutation c.796C > T; p.Arg266* in exon 9. While seizures in the mother had been incompletely controlled by levetiracetam, she remained seizure-free on pyridoxine monotherapy, 200 mg/day. Her fourth pregnancy resulted in a female affected offspring, who was treated prospectively and never developed seizures with a normal outcome at age 2 years while on pyridoxine. This report illustrates that the phenotypic spectrum of antiquitin deficiency is still underestimated and that this treatable inborn error of metabolism has to be considered in case of therapy-resistant seizures even at older age. It furthermore supports prospective in utero treatment with pyridoxine in forthcoming pregnancies at risk.


Subject(s)
Aldehyde Dehydrogenase/deficiency , Epilepsy/etiology , Epilepsy/genetics , Metabolic Diseases/complications , Metabolic Diseases/genetics , Age of Onset , Aldehyde Dehydrogenase/genetics , Epilepsy/blood , Epilepsy/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Metabolic Diseases/blood , Metabolic Diseases/diagnostic imaging , Pipecolic Acids/blood , Young Adult
11.
Hum Mutat ; 38(8): 988-1001, 2017 08.
Article in English | MEDLINE | ID: mdl-28497574

ABSTRACT

Mutations in the human MMAA gene cause the metabolic disorder cblA-type methylmalonic aciduria (MMA), although knowledge of the mechanism of dysfunction remains lacking. MMAA regulates the incorporation of the cofactor adenosylcobalamin (AdoCbl), generated from the MMAB adenosyltransferase, into the destination enzyme methylmalonyl-CoA mutase (MUT). This function of MMAA depends on its GTPase activity, which is stimulated by an interaction with MUT. Here, we present 67 new patients with cblA-type MMA, identifying 19 novel mutations. We biochemically investigated how missense mutations in MMAA in 22 patients lead to disease. About a third confer instability to the recombinant protein in bacterial and human expression systems. All 15 purified mutant proteins demonstrated wild-type like intrinsic GTPase activity and only one (p.Asp292Val), where the mutation is in the GTP binding domain, revealed decreased GTP binding. However, all mutations strongly decreased functional association with MUT by reducing GTPase activity stimulation upon incubation with MUT, while nine mutant proteins additionally lost the ability to physically bind MUT. Finally, all mutations interfered with gating the transfer of AdoCbl from MMAB to MUT. This work suggests loss of functional interaction between MMAA and MUT as a disease-causing mechanism that impacts processing and assembly of a cofactor to its destination enzyme.


Subject(s)
Amino Acid Metabolism, Inborn Errors/metabolism , Mitochondrial Proteins/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Child , Child, Preschool , Cobamides/metabolism , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Membrane Transport Proteins/metabolism , Methylmalonyl-CoA Mutase/metabolism , Mitochondrial Proteins/genetics , Mutation , Mutation, Missense/genetics , Protein Binding
12.
J Inherit Metab Dis ; 39(5): 733-741, 2016 09.
Article in English | MEDLINE | ID: mdl-27342130

ABSTRACT

BACKGROUND: Recent decades have unravelled the molecular background of a number of inborn errors of metabolism (IEM) causing vitamin B6-dependent epilepsy. As these defects interfere with vitamin B6 metabolism by different mechanisms, the plasma vitamin B6 profile can give important clues for further molecular work-up. This has so far been investigated in only a small number of patients. METHODS: We evaluated the vitamin B6 vitamers pyridoxal 5'-phosphate (PLP), pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN) and the catabolite pyridoxic acid (PA) in the so far largest patient cohort: reference (n = 50); pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency (n = 6); antiquitin (ATQ) deficiency (n = 21); tissue non-specific alkaline phosphatase (TNSALP) deficiency (n = 2) and epileptic encephalopathy (EE) of unknown etiology tested negative for ATQ and PNPO deficiency (n = 64). RESULTS: High plasma PM concentration was found in all patients with PNPO deficiency irrespective of vitamin B6 supplementation. Their PM concentration and the PM/PA ratio was significantly higher (p < 0.0001), compared to any other patients analysed. One patient with TNSALP deficiency and sampling prior to PN supplementation had markedly elevated plasma PLP concentration. On PN supplementation, patients with TNSALP deficiency, ATQ deficiency and patients of the EE cohort had similar plasma vitamin B6 profiles that merely reflect the intake of supra-physiological doses of vitamin B6. The interval of sampling to the last PN intake strongly affected the plasma concentrations of PN, PL and PA. CONCLUSIONS: PM concentrations and the PM/PA ratio clearly separated PNPO-deficient patients from the other cohorts. The plasma PM/PA ratio thus represents a robust biomarker for the selective screening of PNPO deficiency.


Subject(s)
Plasma/chemistry , Spasms, Infantile/blood , Adolescent , Adult , Biomarkers/blood , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Metabolism, Inborn Errors/blood , Pyridoxal/blood , Pyridoxal Phosphate/analogs & derivatives , Pyridoxal Phosphate/blood , Pyridoxamine/blood , Pyridoxic Acid/blood , Pyridoxine/blood , Vitamin B 6/blood , Young Adult
13.
Hum Mutat ; 36(6): 611-21, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25736335

ABSTRACT

5,10-Methylenetetrahydrofolate reductase (MTHFR) deficiency is the most common inherited disorder of folate metabolism and causes severe hyperhomocysteinaemia. To better understand the relationship between mutation and function, we performed molecular genetic analysis of 76 MTHFR deficient patients, followed by extensive enzymatic characterization of fibroblasts from 72 of these. A deleterious mutation was detected on each of the 152 patient alleles, with one allele harboring two mutations. Sixty five different mutations (42 novel) were detected, including a common splicing mutation (c.1542G>A) found in 21 alleles. Using an enzyme assay in the physiological direction, we found residual activity (1.7%-42% of control) in 42 cell lines, of which 28 showed reduced affinity for nicotinamide adenine dinucleotide phosphate (NADPH), one reduced affinity for methylenetetrahydrofolate, five flavin adenine dinucleotide-responsiveness, and 24 abnormal kinetics of S-adenosylmethionine inhibition. Missense mutations causing virtually absent activity were found exclusively in the N-terminal catalytic domain, whereas missense mutations in the C-terminal regulatory domain caused decreased NADPH binding and disturbed inhibition by S-adenosylmethionine. Characterization of patients in this way provides a basis for improved diagnosis using expanded enzymatic criteria, increases understanding of the molecular basis of MTHFR dysfunction, and points to the possible role of cofactor or substrate in the treatment of patients with specific mutations.


Subject(s)
Genetic Association Studies , Homocystinuria/diagnosis , Homocystinuria/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/deficiency , Muscle Spasticity/diagnosis , Muscle Spasticity/genetics , Alleles , Alternative Splicing , Enzyme Activation , Exons , Fibroblasts/metabolism , Homocystinuria/metabolism , Humans , Introns , Kinetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Muscle Spasticity/metabolism , Mutation , Polymorphism, Single Nucleotide , Protein Stability , Psychotic Disorders/diagnosis , Psychotic Disorders/genetics , Psychotic Disorders/metabolism
14.
Eur J Pediatr ; 174(1): 105-12, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25277362

ABSTRACT

UNLABELLED: The kyphoscoliotic type of the Ehlers-Danlos syndrome (EDS VIA) is a rare recessively inherited connective tissue disorder characterized by bruisable, hyperextensible skin, generalized joint laxity, severe muscular hypotonia at birth and progressive congenital scoliosis or kyphosis. Deficiency of the enzyme lysyl hydroxylase 1 (LH1) due to mutations in PLOD1 results in underhydroxylation of collagen lysyl residues and, hence, in the abnormal formation of collagen cross-links. Here, we report on the clinical, biochemical, and molecular findings in six Egyptian patients from four unrelated families severely affected with EDS VIA. In addition to the frequently reported p.Glu326_Lys585dup, we identified two novel sequence variants p.Gln208* and p.Tyr675*, which lead either to loss of function of LH1 or to its deficiency. All affected children presented with similar clinical features of the disorder, and in addition, several dysmorphic craniofacial features, not yet described in EDS VIA. These were specific for the affected individuals of each family, but absent in their parents and their unaffected siblings. CONCLUSION: Our description of six patients presenting with a homogeneous clinical phenotype and dysmorphic craniofacial features will help pediatricians in the diagnosis of this rare disorder.


Subject(s)
Ehlers-Danlos Syndrome/diagnosis , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/deficiency , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Child , Child, Preschool , Craniofacial Abnormalities/etiology , Ehlers-Danlos Syndrome/enzymology , Ehlers-Danlos Syndrome/genetics , Female , Humans , Infant , Male , Phenotype
15.
Mol Genet Metab ; 109(3): 289-95, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23680354

ABSTRACT

Brittle cornea syndrome (BCS; MIM 229200) is an autosomal recessive generalized connective tissue disorder caused by mutations in ZNF469 and PRDM5. It is characterized by extreme thinning and fragility of the cornea that may rupture in the absence of significant trauma leading to blindness. Keratoconus or keratoglobus, high myopia, blue sclerae, hyperelasticity of the skin without excessive fragility, and hypermobility of the small joints are additional features of BCS. Transcriptional regulation of extracellular matrix components, particularly of fibrillar collagens, by PRDM5 and ZNF469 suggests that they might be part of the same pathway, the disruption of which is likely to cause the features of BCS. In the present study, we have performed molecular analysis of a cohort of 23 BCS affected patients on both ZNF469 and PRDM5, including those who were clinically reported previously [1]; the clinical description of three additional patients is reported in detail. We identified either homozygous or compound heterozygous mutations in ZNF469 in 18 patients while, 4 were found to be homozygous for PRDM5 mutations. In one single patient a mutation in neither ZNF469 nor PRDM5 was identified. Furthermore, we report the 12 novel ZNF469 variants identified in our patient cohort, and show evidence that ZNF469 is a single exon rather than a two exon gene.


Subject(s)
Ehlers-Danlos Syndrome/genetics , Exons , Extracellular Matrix/genetics , Gene Expression Regulation , Mutation , Transcription Factors/genetics , Adolescent , Child , Child, Preschool , DNA Mutational Analysis , DNA-Binding Proteins/genetics , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/therapy , Eye Abnormalities , Female , Genotype , Humans , Joint Instability/congenital , Skin Abnormalities
16.
Orphanet J Rare Dis ; 7: 31, 2012 May 29.
Article in English | MEDLINE | ID: mdl-22642865

ABSTRACT

BACKGROUND: Isolated 3-methylcrotonyl-CoA carboxylase (MCC) deficiency is an autosomal recessive disorder of leucine metabolism caused by mutations in MCCC1 or MCCC2 encoding the α and ß subunit of MCC, respectively. The phenotype is highly variable ranging from acute neonatal onset with fatal outcome to asymptomatic adults. METHODS: We report clinical, biochemical, enzymatic and mutation data of 88 MCC deficient individuals, 53 identified by newborn screening, 26 diagnosed due to clinical symptoms or positive family history and 9 mothers, identified following the positive newborn screening result of their baby. RESULTS: Fifty-seven percent of patients were asymptomatic while 43% showed clinical symptoms, many of which were probably not related to MCC deficiency but due to ascertainment bias. However, 12 patients (5 of 53 identified by newborn screening) presented with acute metabolic decompensations. We identified 15 novel MCCC1 and 16 novel MCCC2 mutant alleles. Additionally, we report expression studies on 3 MCCC1 and 8 MCCC2 mutations and show an overview of all 132 MCCC1 and MCCC2 variants known to date. CONCLUSIONS: Our data confirm that MCC deficiency, despite low penetrance, may lead to a severe clinical phenotype resembling classical organic acidurias. However, neither the genotype nor the biochemical phenotype is helpful in predicting the clinical course.


Subject(s)
Urea Cycle Disorders, Inborn/metabolism , Carbon-Carbon Ligases/deficiency , Carbon-Carbon Ligases/genetics , Carbon-Carbon Ligases/metabolism , Cell Line , Child , Child, Preschool , Female , Humans , Infant , Male , Polymerase Chain Reaction , Surveys and Questionnaires , Urea Cycle Disorders, Inborn/genetics , Urea Cycle Disorders, Inborn/pathology , Urea Cycle Disorders, Inborn/physiopathology
17.
Mol Genet Metab ; 105(4): 602-6, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22264772

ABSTRACT

Isolated 3-Methylcrotonyl-CoA carboxylase deficiency (MCC deficiency) is an organic aciduria presenting with a highly variable phenotype and has been part of newborn screening programs in various countries, in particular in the US. Here we present enzymatic and genetic characterisation of 22 individuals with increased 3-hydroxyisovalerylcarnitine and/or 3-methylcrotonylglycine suggesting MCC deficiency, but only partially reduced 3-methylcrotonyl-CoA carboxylase activity. Among these, 21 carried a single mutant allele in either MCCC1 (n=20) or MCCC2 (n=1). Our results suggest that heterozygosity for such a single deleterious mutation may lead to misdiagnosis of MCC deficiency.


Subject(s)
Carbon-Carbon Ligases/genetics , Mutation/genetics , Neonatal Screening , Urea Cycle Disorders, Inborn/diagnosis , Urea Cycle Disorders, Inborn/genetics , Acyl Coenzyme A/metabolism , Carbon-Carbon Ligases/deficiency , Carnitine/analogs & derivatives , Carnitine/metabolism , Cells, Cultured , Child , Child, Preschool , DNA Mutational Analysis , Female , Fibroblasts/cytology , Fibroblasts/enzymology , Glycine/analogs & derivatives , Glycine/metabolism , Heterozygote , Humans , Infant , Infant, Newborn , Male , Real-Time Polymerase Chain Reaction , Skin/cytology , Skin/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...